Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
1.
J Agric Food Chem ; 72(8): 4063-4073, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364207

RESUMO

White line-inducing principle (WLIP, 1), together with two new cyclic lipopeptides (CLPs) WLIPß (2) and WLIPγ (3), were characterized from the supernatant of Pseudomonas canadensis Q3-1 via precursor-directed biosynthesis (PDB) in the current study. They were purified from the supernatant of P. canadensis Q3-1 by solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC), and their structures were mainly determined via bioinformatic analyses, spectrometric and spectroscopic techniques, as well as single crystal X-ray diffraction (XRD). These WLIPs share (R)-3-hydroxydecanoic acid (HDA), but they differ from each other in the composition of peptidic sequences. In addition, these CLPs showed biocontrol activities against Phytophthora blight (caused by Phytophthora capsici) in peppers. Collectively, this study has shown that PDB could be used for generating new CLPs in Pseudomonas spp. Moreover, we have confirmed that WLIP, WLIPß, and WLIPγ could be used as lead agrochemicals to control Phytophthora blight in peppers.


Assuntos
Phytophthora , Piper nigrum , Pseudomonas/química , Doenças das Plantas/prevenção & controle
2.
J Org Chem ; 88(23): 16280-16291, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947517

RESUMO

Bacteria in certain genera can produce "bacterial polyynes" that contain a conjugated C≡C bond starting from a terminal alkyne. Protegenin A is a derivative of octadecanoic acid that contains an ene-tetrayne moiety. It was discovered in Pseudomonas protegens Cab57 and exhibits strong antioomycete and moderate antifungal activity. By introducing cayG, a cytochrome P450 gene from Burkholderia caryophylli, into P. protegens Cab57, protegenin A was converted into more complex polyynes, caryoynencins A-E. A purification method that minimized the degradation and isomerization of caryoynencins was established. For the first time, as far as we know, the 1H and 13C{1H} NMR signals of caryoynencins were completely assigned by analyzing the NMR data of the isolated compounds and protegenin A enriched with [1-13C]- or [2-13C]-acetate. Through the structural analysis of caryoynencins D/E and bioconversion experiments, we observed that CayG constructs the allyl alcohol moiety of caryoynencins A-C through sequential hydroxylation, dehydration, and hydroxylation. The recombinant strain exhibited a stronger antioomycete activity compared to the wild-type strain. This paper proposes a stable purification and structural determination method for various bacterial polyynes, and P. protegens Cab57 holds promise as an engineering host for the production of biologically active polyynes.


Assuntos
Bactérias , Poli-Inos , Poli-Inos/metabolismo , Antifúngicos/metabolismo , Pseudomonas/genética , Pseudomonas/química , Pseudomonas/metabolismo
3.
Org Lett ; 24(18): 3337-3341, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35510837

RESUMO

Tabtoxin is a ß-lactam ring-containing phytotoxin produced by a plant pathogenic Pseudomonas species. Here, we describe the early stages of tabtoxin biosynthesis, involving a C-methylation reaction catalyzed by the S-adenosyl-l-methionine-dependent methyltransferase TblA as the initial step for the ß-lactam construction. Gene deletion and in vitro biochemical assays demonstrated that the Gcn5-related N-acetyltransferase domain of TblD catalyzes the acetylation of the α-amino group of 5-methyl-l-lysine. This establishment of the early reaction steps lays the foundation for characterizing unique ß-lactam biosynthesis.


Assuntos
Pseudomonas , beta-Lactamas , Dipeptídeos , Lisina , Pseudomonas/química
4.
Org Lett ; 24(20): 3696-3701, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35549295

RESUMO

Herein we report the first total syntheses of the trisaccharide-repeating units of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306 via a one-pot assembly of the core trisaccharide structure. The rare-sugar-containing trisaccharide-repeating units are comprised of d-bacillosamine, 2-amino-2-deoxy-d-galacturonic acid or amide, and d-rhamnose units linked through three consecutive α-linkages. The total syntheses of two repeating units were completed starting from d-mannose via a longest-linear sequence of 27 steps in 5.8% and 4.4% overall yields, respectively.


Assuntos
Antígenos O , Pseudomonas , Glicosilação , Antígenos O/química , Pseudomonas/química , Trissacarídeos
5.
Cienc. tecnol. salud ; 9(2): 189-198, 2022. il^c27
Artigo em Espanhol | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1415975

RESUMO

La contaminación por plásticos petroquímicos es una grave amenaza para el medio ambiente que requiere im-plementar alternativas como los bioplásticos para lograr un desarrollo sostenible. Los polihidroxialcanoatos (PHA) son polímeros utilizados para la producción de plásticos biodegradables y que han llamado la atención como sustitutos de los plásticos de base fósil. Sin embargo, el costo de producción de los PHA constituye una barrera para su producción industrial a gran escala. Las de bacterias de hábitats salinos son microorganismos prometedores para la síntesis de PHA debido a sus características tales como altos requisitos de salinidad que previenen la contaminación microbiana, la alta presión osmótica intracelular que permite una fácil lisis celular para purificar los PHA y la capacidad para usar un amplio espectro de sustratos. La presente investigación planteó determinar las cepas nativas de bacterias halófilas y halotolerantes de la Laguna de Ayarza capaces de producir PHA, establecer la capacidad que tienen de utilizar residuos agrícolas para la producción de PHA y determinar su eficiencia. Esto se logró a través de la inoculación de las cepas productoras de PHA en medios de fermentación con pulpa de café, cáscaras de plátanos y salvado de trigo lo que permitió determinar las cepas más eficientes. Se encontró que las bacterias productoras de PHA pertenecen a las especies: Alcaligenes faecalis, Bacillus idriensis, Bacillus megaterium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis y Sta-phylococcus capitis y que las cepas AP21-14, AP21-10 y AP21-03 mostraron los mejores resultados que podrían ser prometedores para la producción a nivel industrial.


Pollution by petrochemical plastics is a serious threat to the environment that requires the implementation of al-ternatives such as bioplastics to achieve sustainable development. Polyhydroxyalkanoates (PHAs) are polymers used for the production of biodegradable plastics and have drawn attention as substitutes for fossil-based plastics. However, the cost of producing PHAs constitutes a barrier to their large-scale industrial production. Bacteria from saline environments bacteria are promising microorganisms for PHA synthesis due to their characteristics such as high salinity requirements that prevent microbial contamination, high intracellular osmotic pressure that allows easy cell lysis to purify PHAs, and the ability to use a broad spectrum of substrates. This research project aimed to determine the native strains of halophilic and halotolerant bacteria from Laguna de Ayarza capable of producing PHA, establish their ability to use agricultural residues for the production of PHA, and determine their efficiency. This was achieved through the inoculation of the PHA-producing strains in fermentation media with coffee pulp, banana peels and wheat bran, which allowed determining the most efficient strains. It was found that the PHA-producing bacteria belong to the species: Alcaligenes faecalis, Bacillus idriensis, Bacillus mega-terium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis and Staphylococcus capitis and that the strains AP21-14, AP21-10 and AP21-03 showed the best results that could be promising for production at an industrial level.


Assuntos
Humanos , Halomonas , Poli-Hidroxialcanoatos/análise , Plásticos Biodegradáveis/química , Pseudomonas/química , Bacillus megaterium/química , Laguna Costeira , Alcaligenes faecalis/química , Fermentação , Staphylococcus capitis , Exiguobacterium/química , Guatemala , Resíduos Industriais/efeitos adversos
6.
Toxins (Basel) ; 13(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822556

RESUMO

The bioinsecticidal action of Pseudomonas protegens has so far been reported against some target insects, and the mode of action remains unclear. In this study, the pathogenicity potential of a recently isolated strain of this bacterial species against fly larvae of medical and veterinary interest was determined. Preliminary experiments were conducted to determine the biocidal action by ingestion against Musca domestica and Lucilia caesar larvae, which highlighted a concentration-dependent effect, with LC50 values of 3.6 and 2.5 × 108 CFU/mL, respectively. Bacterial septicaemia was observed in the body of insects assuming bacterial cells by ingestion. Such rapid bacterial reproduction in the hemolymph supports a toxin-mediated mechanism of action involving the intestinal barrier overcoming. In order to gain more information on the interaction with the host, the relative time-course expression of selected P. protegens genes associated with virulence and pathogenicity, was determined by qPCR at the gut level during the first infection stage. Among target genes, chitinase D was the most expressed, followed by pesticin and the fluorescent insecticidal toxin fitD. According to our observations and to the diversity of metabolites P. protegens produces, the pathogenic interaction this bacterium can establish with different targets appears to be complex and multifactorial.


Assuntos
Calliphoridae , Moscas Domésticas , Controle de Insetos , Pseudomonas/química , Animais , Calliphoridae/crescimento & desenvolvimento , Moscas Domésticas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento
7.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830310

RESUMO

Tryptophan metabolism plays a role in the occurrence and development of hepatocellular carcinoma cells. By degrading certain amino acids, tumor growth can be limited while maintaining the body's normal nutritional requirements. Tryptophan side-chain oxidase (TSO) enzyme can degrade tryptophan, and its inhibitory effect on hepatocellular carcinoma cells is worthy of further study. To investigate the degradation effect on tryptophan, TSO was isolated and purified from qq Pseudomonas. The reaction products were identified with high performance liquid chromatography (HPLC) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS). De novo sequencing provided the complete amino acid sequence of TSO. The results of CCK-8, colony formation, transwell, and qPCR confirmed that TSO had inhibitory effects on the proliferation and migration of HCCLM3 (human hepatocarcinoma cell line) and HepG2 cells. The results of flow cytometry confirmed its apoptotic activity. In animal experiments, we found that the tumor-suppressive effect was better in the oncotherapy group than the intraperitoneal injection group. The results of immunohistochemistry also suggested that TSO could inhibit proliferation and promote apoptosis. In conclusion, a specific enzyme that can degrade tryptophan and inhibit the growth of hepatoma cells was authenticated, and its basic information was obtained by extraction/purification and amino acid sequencing.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Bactérias/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Oxigenases de Função Mista/farmacologia , Triptofano/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Secundária de Proteína , Pseudomonas/química , Pseudomonas/enzimologia , Pseudomonas/genética , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
8.
J Microbiol ; 59(12): 1104-1111, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34697784

RESUMO

An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell's state is its fatty acid (FA) profile, reflecting membrane lipid composition. Consideration of FA composition enables assessment of bacterial responses to cultivation conditions and helps biotechnologists understand the most significant factors impacting cellular metabolism. In this work, soil SDS-degrading Pseudomonas helmanticensis was studied at the fatty acid profile level, including analysis of rearrangement between planktonic and aggregated forms. The set of substrates included fat hydrolysates, SDS, and their mixtures with glucose. Such media are useful in bioplastic production since they can help incrementally lower overall costs. Conventional gas chromatography-mass spectrometry was used for FA analysis. Acridine orange-stained aggregates were observed by epifluorescence microscopy. The bacterium was shown to change fatty acid composition in the presence of hydrolyzed fats or SDS. These changes seem to be driven by the depletion of metabolizable substrates in the culture medium. Cell aggregation has also been found to be a defense strategy, particularly with anionic surfactant (SDS) exposure. It was shown that simple fluidity indices (such as saturated/unsaturated FA ratios) do not always sufficiently characterize a cell's physiological state, and morphological examination is essential in cases where complex carbon sources are used.


Assuntos
Adaptação Fisiológica , Ácidos Graxos/análise , Metabolismo dos Lipídeos , Pseudomonas/metabolismo , Dodecilsulfato de Sódio/metabolismo , Meios de Cultura , Glucose/metabolismo , Hidrólise , Pseudomonas/química , Pseudomonas/crescimento & desenvolvimento
9.
Int J Biol Macromol ; 190: 722-729, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506862

RESUMO

Phasin (PhaP), one of the polyhydroxyalkanoate granule-associated protein, enhances cell growth and polyhydroxybutyrate (PHB) biosynthesis by regulating the number and size of PHB granules. However, few studies have applied phasins to various PHB production conditions. In this study, we identified novel phasin genes from the genomic data of Arctic soil bacterium Pseudomonas sp. B14-6 and determined the role of phaP1Ps under different PHB production conditions. Transmission electron microscopy and gel permeation chromatography revealed small PHB granules with high-molecular weight, while differential scanning calorimetry showed that the extracted PHB films had similar thermal properties. The phasin protein derived from Pseudomonas sp. B14-6 revealed higher PHB production and exhibited higher tolerance to several lignocellulosic biosugar-based inhibitors than the phasin protein of Ralstonia eutropha H16 in a recombinant Escherichia coli strain. The increased tolerance to propionate, temperature, and other inhibitors was attributed to the introduction of phaP1Ps, which increased PHB production from lignocellulosic hydrolysate (2.39-fold) in the phaP1Ps strain. However, a combination of phasin proteins isolated from two different sources did not increase PHB production. These findings suggest that phasin could serve as a powerful means to increase robustness and PHB production in heterologous strains.


Assuntos
Hidroxibutiratos/metabolismo , Lectinas de Plantas/farmacologia , Pseudomonas/química , Varredura Diferencial de Calorimetria , Carbono/farmacologia , Escherichia coli/metabolismo , Hidrólise , Lignina/metabolismo , Filogenia , Lectinas de Plantas/genética , Temperatura , Fatores de Tempo
10.
Molecules ; 26(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34443401

RESUMO

The dinitrotoluene isomers 2,4 and 2,6-dinitrotoluene (DNT) represent highly toxic, mutagenic, and carcinogenic compounds used in explosive manufacturing and in commercial production of polyurethane foam. Bioremediation, the use of microbes to degrade residual DNT in industry wastewaters, represents a promising, low cost and environmentally friendly alternative technology to landfilling. In the present study, the effect of different bioremediation strategies on the degradation of DNT in a microcosm-based study was evaluated. Biostimulation of the indigenous microbial community with sulphur phosphate (2.3 g/kg sludge) enhanced DNT transformation (82% transformation, from 300 g/L at Day 0 to 55 g/L in week 6) compared to natural attenuation over the same period at 25 °C. The indigenous microbial activity was found to be capable of transforming the contaminant, with around 70% transformation of DNT occurring over the microcosm study. 16S rDNA sequence analysis revealed that while the original bacterial community was dominated by Gammaproteobacteria (30%), the addition of sulphur phosphate significantly increased the abundance of Betaproteobacteria by the end of the biostimulation treatment, with the bacterial community dominated by Burkholderia (46%) followed by Rhodanobacter, Acidovorax and Pseudomonas. In summary, the results suggest biostimulation as a treatment choice for the remediation of dinitrotoluenes and explosives waste.


Assuntos
Biodegradação Ambiental , Substâncias Explosivas/toxicidade , Microbiota/genética , Esgotos/microbiologia , Burkholderia/química , Burkholderia/genética , Burkholderia/isolamento & purificação , Burkholderia/metabolismo , Dinitrobenzenos/química , Dinitrobenzenos/toxicidade , Substâncias Explosivas/química , Humanos , Pseudomonas/química , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética
11.
Int J Mol Med ; 48(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080646

RESUMO

Glioblastomas (GBMs) are refractory to current treatments and novel therapeutic approaches need to be explored. Pro­apoptotic tumor necrosis factor­related apoptosis­inducing ligand (TRAIL) is tumor­specific and has been shown to induce apoptosis and subsequently kill GBM cells. However, approximately 50% of GBM cells are resistant to TRAIL and a combination of TRAIL with other therapeutics is necessary to induce mechanism­based cell death in TRAIL­resistant GBMs. The present study examined the ability of the tumor cell surface receptor, interleukin (IL)­13 receptor α2 (IL13Rα2)­ and epidermal growth factor receptor (EGFR)­targeted pseudomonas exotoxin (PE) to sensitize TRAIL­resistant GBM cells and assessed the dual effects of interleukin 13­PE (IL13­PE) or EGFR nanobody­PE (ENb­PE) and TRAIL for the treatment of a broad range of brain tumors with a distinct TRAIL therapeutic response. Receptor targeted toxins upregulated TRAIL death receptors (DR4 and DR5) and suppressed the expression of anti­apoptotic FLICE­inhibitory protein (FLIP) and X­linked inhibitor of apoptosis protein (XIAP). This also led to the induction of the cleavage of caspase­8 and caspase­9 and resulted in the sensitization of highly resistant established GBM and patient­derived GBM stem cell (GSC) lines to TRAIL­mediated apoptosis. These findings provide a mechanism­based strategy that may provide options for the cell­mediated delivery of bi­functional therapeutics to target a wide spectrum of TRAIL­resistant GBMs.


Assuntos
Toxinas Bacterianas/farmacologia , Exotoxinas/farmacologia , Glioblastoma , Subunidade alfa2 de Receptor de Interleucina-13 , Interleucina-13/farmacologia , Proteínas de Neoplasias , Pseudomonas/química , Anticorpos de Domínio Único/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF , Toxinas Bacterianas/química , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Exotoxinas/química , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Imunotoxinas/química , Imunotoxinas/farmacologia , Interleucina-13/química , Subunidade alfa2 de Receptor de Interleucina-13/genética , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Anticorpos de Domínio Único/química , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
12.
mSphere ; 6(3): e0042721, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34077259

RESUMO

Phenazine-producing Pseudomonas spp. are effective biocontrol agents that aggressively colonize the rhizosphere and suppress numerous plant diseases. In this study, we compared the ability of 63 plant-beneficial phenazine-producing Pseudomonas strains representative of the worldwide diversity to inhibit the growth of three major potato pathogens: the oomycete Phytophthora infestans, the Gram-positive bacterium Streptomyces scabies, and the ascomycete Verticillium dahliae. The 63 Pseudomonas strains are distributed among four different subgroups within the P. fluorescens species complex and produce different phenazine compounds, namely, phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxphenazine. Overall, the 63 strains exhibited contrasted levels of pathogen inhibition. Strains from the P. chlororaphis subgroup inhibited the growth of P. infestans more effectively than strains from the P. fluorescens subgroup. Higher inhibition was not associated with differential levels of phenazine production nor with specific phenazine compounds. The presence of additional biocontrol-related traits found in P. chlororaphis was instead associated with higher P. infestans inhibition. Inhibition of S. scabies by the 63 strains was more variable, with no clear taxonomic segregation pattern. Inhibition values did not correlate with phenazine production nor with specific phenazine compounds. No additional synergistic biocontrol-related traits were found. Against V. dahliae, PCN producers from the P. chlororaphis subgroup and PCA producers from the P. fluorescens subgroup exhibited greater inhibition. Additional biocontrol-related traits potentially involved in V. dahliae inhibition were identified. This study represents a first step toward harnessing the vast genomic diversity of phenazine-producing Pseudomonas spp. to achieve better biological control of potato pathogens. IMPORTANCE Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens. In this study, we investigated the ability of 63 phenazine-producing strains, isolated from a wide diversity of host plants on four continents, to inhibit the growth of three major potato pathogens: Phytophthora infestans, Streptomyces scabies, and Verticillium dahliae. We found that the 63 strains differentially inhibited the three potato pathogens. These differences are in part associated with the nature and the quantity of the phenazine compounds being produced but also with the presence of additional biocontrol-related traits. These results will facilitate the selection of versatile biocontrol agents against pathogens.


Assuntos
Bactérias/efeitos dos fármacos , Fenazinas/farmacologia , Pseudomonas/química , Pseudomonas/genética , Solanum tuberosum/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/patogenicidade , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Variação Genética , Genoma Bacteriano , Fenazinas/química , Fenazinas/metabolismo , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/crescimento & desenvolvimento , Pseudomonas/classificação , Streptomyces/efeitos dos fármacos , Streptomyces/crescimento & desenvolvimento
13.
Int J Biol Macromol ; 182: 2019-2023, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34081955

RESUMO

An O-specific polysaccharide (OPS) was isolated from the lipopolysaccharide (LPS) of Pseudomonas donghuensis SVBP6, a bacterium with a broad-spectrum antifungal activity in vitro, particularly that against Macrophomina phaseolina. This latter is one of the most virulent and dangerous pathogens of plants, including soybean which is an economically important crop in Argentina today. The OPS was studied by sugar analysis and spectroscopy (1D and 2D 1H and 13C NMR) showing the following trisaccharide repeating unit: →6)-ɑ-D-ManpNAc-(1 â†’ 3)-ß-l-Rhap-(1 â†’ 4)-ß-D-Glcp-(1→. The crude LPS, the purified LPS and the O-chain were assayed for their antifungal activity against M. phaseolina at 25, 50, 100, and 200 µg plug-1. The results showed that the crude LPS best inhibition was at 200 µg plug-1, able to inhibit the fungus growth by about 45%, while purified LPS and the corresponding OPS, in the same condition, reduced fungus growth by 65%, and 75%, respectively. Furthermore, the purified LPS and OPS significantly reduced the growth of M. phaseolina already at 100 µg plug-1 compared to the crude LPS. The structure of the O-chain is unique among the bacterial LPS and this is the first time that both the antifungal activity of a bacterial LPS and its corresponding O-chain were described.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Pseudomonas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Testes de Sensibilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética
14.
Proteins ; 89(9): 1079-1098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33826169

RESUMO

Caprolactamase is the first enzyme in the caprolactam degradation pathway of Pseudomonas jessenii. It is composed of two subunits (CapA and CapB) and sequence-related to other ATP-dependent enzymes involved in lactam hydrolysis, like 5-oxoprolinases and hydantoinases. Low sequence similarity also exists with ATP-dependent acetone- and acetophenone carboxylases. The caprolactamase was produced in Escherichia coli, isolated by His-tag affinity chromatography, and subjected to functional and structural studies. Activity toward caprolactam required ATP and was dependent on the presence of bicarbonate in the assay buffer. The hydrolysis product was identified as 6-aminocaproic acid. Quantum mechanical modeling indicated that the hydrolysis of caprolactam was highly disfavored (ΔG0 '= 23 kJ/mol), which explained the ATP dependence. A crystal structure showed that the enzyme exists as an (αß)2 tetramer and revealed an ATP-binding site in CapA and a Zn-coordinating site in CapB. Mutations in the ATP-binding site of CapA (D11A and D295A) significantly reduced product formation. Mutants with substitutions in the metal binding site of CapB (D41A, H99A, D101A, and H124A) were inactive and less thermostable than the wild-type enzyme. These residues proved to be essential for activity and on basis of the experimental findings we propose possible mechanisms for ATP-dependent lactam hydrolysis.


Assuntos
Trifosfato de Adenosina/química , Amidoidrolases/química , Proteínas de Bactérias/química , Caprolactama/química , Subunidades Proteicas/química , Pseudomonas/enzimologia , Trifosfato de Adenosina/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Ácido Aminocaproico/química , Ácido Aminocaproico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Caprolactama/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hidrólise , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pseudomonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
15.
Rapid Commun Mass Spectrom ; 35(10): e9069, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33634499

RESUMO

RATIONALE: Single-particle aerosol mass spectrometry is a practical method for studying microbial aerosols. However, the related mass spectral characteristics of single-cell microorganisms have not yet been studied systematically; hence, further investigations are necessary. METHODS: Different microbial cells were grown and directly aerosolized in the laboratory. These aerosols were then drawn into a single-particle mass spectrometer platform, and single-cell mass spectra profiles were obtained in real-time. The biological characteristics, ion variation trends, and microbial types were analyzed with either laser pulse energy or laser fluence. RESULTS: The single-particle mass spectra contained prominent peaks that could be attributed to the presence of biological matter, such as organic phosphate and nitrogen, amino acids, and spore-associated calcium complexes. Limited types of average mass spectral patterns were present, and a significant correlation was found between the ion intensity trend (presence and absence of peaks) and laser ionization energy (expressed by the total positive ion intensity). Although a single spectral data point does not contain all the peaks of the average spectrum, it covers most of the characteristic peaks and could be identified using a machine learning algorithm. After the analysis of single-particle mass spectra, we found that using multi-group features (e.g., peak intensity ratio of m/z +47 and +41, peak intensity ratio of 59 N(CH3 )3 + and 74 N(CH3 )4 + , and 12 peak variables) led to an identification accuracy of approximately 92.4% with the random forest algorithm. CONCLUSIONS: The results indicate that single-cell mass spectral profiles can be used to distinguish microbial aerosols and further illustrate their origin in a laboratory setting.


Assuntos
Bacillus/química , Espectrometria de Massas/métodos , Pseudomonas/química , Análise de Célula Única/métodos , Aerossóis/análise , Bacillus/citologia , Peso Molecular , Pseudomonas/citologia
16.
Sci Rep ; 11(1): 3006, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542376

RESUMO

Pseudomonas are ubiquitously occurring microorganisms and are known for their ability to produce antimicrobials. An endophytic bacterial strain NP-1 T, isolated from Eucalyptus dunnii leaves, exhibits antifungal properties against five tested phytopathogenic fungi. The strain is a Gram-negative rod-shaped bacterium containing a single polar flagellum. It is strictly aerobic, grows at 4-37 °C, 2-5% NaCl, and pH 3-7. The 16S rRNA sequence analysis showed that NP-1 T belongs to the Pseudomonas genus. Phylogenetic analysis based on four concatenated partial genes (16S rDNA, gyrB, rpoB and rpoD) and the phylogenomic tree indicated that NP-1 T belongs to Pseudomonas fluorescens lineage but is distinct from any known Pseudomonas species. The G + C mol % of NP-1 T genome is 63.96, and the differences between NP-1 T and related species are larger than 1. The digital DNA-DNA hybridization and tetranucleotide signatures are 23.8 and 0.97, which clearly separates strain NP-1 T from its closest neighbours, Pseudomonas coleopterorum and Pseudomonas rhizosphaerae. Its phenotypic and chemotaxonomic features confirmed its differentiation from related taxa. The results from this polyphasic approach support the classification of NP-1 T as a novel species of Pseudomonas, and the name of Pseudomonas eucalypticola is thus proposed for this strain, whose type is NP-1 T (= CCTCC M2018494T = JCM 33572 T).


Assuntos
Eucalyptus/metabolismo , Folhas de Planta/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Composição de Bases , Eucalyptus/química , Eucalyptus/microbiologia , Genoma Bacteriano/genética , Humanos , Filogenia , Folhas de Planta/química , Folhas de Planta/microbiologia , Pseudomonas/química , Pseudomonas/classificação , RNA Ribossômico 16S/genética
17.
Sci Rep ; 11(1): 1717, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462359

RESUMO

Heavy metals, including chromium, are associated with developed industrialization and technological processes, causing imbalanced ecosystems and severe health concerns. The current study is of supreme priority because there is no previous work that dealt with the modeling of the optimization of the biosorption process by the immobilized cells. The significant parameters (immobilized bacterial cells, contact time, and initial Cr6+ concentrations), affecting Cr6+ biosorption by immobilized Pseudomonas alcaliphila, was verified, using the Plackett-Burman matrix. For modeling the maximization of Cr6+ biosorption, a comparative approach was created between rotatable central composite design (RCCD) and artificial neural network (ANN) to choose the most fitted model that accurately predicts Cr6+ removal percent by immobilized cells. Experimental data of RCCD was employed to train a feed-forward multilayered perceptron ANN algorithm. The predictive competence of the ANN model was more precise than RCCD when forecasting the best appropriate wastewater treatment. After the biosorption, a new shiny large particle on the bead surface was noticed by the scanning electron microscopy, and an additional peak of Cr6+ was appeared by the energy dispersive X-ray analysis, confirming the role of the immobilized bacteria in the biosorption of Cr6+ ions.


Assuntos
Cromo/análise , Redes Neurais de Computação , Pseudomonas/química , Adsorção , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Cromo/química , Íons/química , Pseudomonas/metabolismo , Análise de Regressão , Espectrometria por Raios X , Propriedades de Superfície , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos
18.
Angew Chem Int Ed Engl ; 60(16): 8781-8785, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460275

RESUMO

Indolyloxazole alkaloids occur in diverse micro- and macroorganisms and exhibit a wide range of pharmacological activities. Despite their ubiquitous occurrence and simple structures, the biosynthetic pathway remained unknown. Here, we used transposon mutagenesis in the labradorin producer Pseudomonas entomophila to identify a cryptic biosynthetic locus encoding an N-acyltransferase and a non-heme diiron desaturase-like enzyme. Heterologous expression in E. coli demonstrates that both enzymes are sufficient to produce indolyloxazoles. Probing their function in stable-isotope feeding experiments, we provide evidence for an unusual desaturase mechanism that generates the oxazole by decarboxylative cyclization.


Assuntos
Adenilil Ciclases/metabolismo , Alcaloides/metabolismo , Oxigenases de Função Mista/metabolismo , Oxazóis/metabolismo , Pseudomonas/química , Alcaloides/química , Biocatálise , Estrutura Molecular , Oxazóis/química , Pseudomonas/metabolismo
19.
Carbohydr Res ; 499: 108235, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33461053

RESUMO

Two Pseudomonas strains were isolated from the Ficus elastica leaves. The O-antigens were obtained using phenol-water method and mild acid degradation. The following structures of the O-polysaccharides were established by sugar analysis and 2D NMR spectroscopy: OPS of Pseudomonas psychrotolerans BIM B-1171 G -2)[aDGlcp(1-3)]bDRhap(1-3)aDManp(1-3)aDRhap(1- OPS of Pseudomonas sp. BIM B-1172 G -2)bDRhap(1-3)aDRhap(1-3)[aDGlcp(1-2)]aDRhap(1-.


Assuntos
Ficus/química , Antígenos O/química , Pseudomonas/química , Ficus/microbiologia , Antígenos O/isolamento & purificação , Folhas de Planta/química , Folhas de Planta/microbiologia , Pseudomonas/isolamento & purificação
20.
J Nat Prod ; 84(1): 101-109, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33382250

RESUMO

Genome mining of the bacterial strains Pseudomonas sp. SH-C52 and Pseudomonas fluorescens DSM 11579 showed that both strains contained a highly similar gene cluster encoding an octamodular nonribosomal peptide synthetase (NRPS) system which was not associated with a known secondary metabolite. Insertional mutagenesis of an NRPS component followed by comparative profiling led to the discovery of the corresponding novel linear octalipopeptide thanafactin A, which was subsequently isolated and its structure determined by two-dimensional NMR and further spectroscopic and chromatographic methods. In bioassays, thanafactin A exhibited weak protease inhibitory activity and was found to modulate swarming motility in a strain-specific manner.


Assuntos
Peptídeo Sintases/química , Prolina/química , Pseudomonas/química , Genoma Bacteriano , Família Multigênica , Peptídeo Sintases/metabolismo , Pseudomonas/efeitos dos fármacos , Pseudomonas fluorescens/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...